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Preface

This report by Dr. John Tweed is the outgrowth of some of the author's

work on fracture mechanics initiated while he was a Visiting Assistant

Professor at North Carolina State University in 1969-70.

Although the major portion of this work was not supported by

Grant AFOSR-69-1779, it ib being presented as a project report as a part of

our continuiag interest in problems of fracture mechanics.

Dr. Tweed plans to obtain some computational results using the theoretical

tools derived in this report,

W. JL'frringtond
Project Director



ABSTRACT

In this paper, the author makes use of a recent development in the

theory of Mellin transforms to show that the stress intensity factor and the

crack energy of a crack, which originates at the edge of a circular hole in

an infinite elastic solid, are related in a simple fashion to the solution of

a Fredholm integral equation of the second kind.



THE DISTRIBUTION OF STRESS NEAR THE TIP OF A CRACK WHICH
ORIGINATES AT THE EDGE OF A CIRCULAR HOLE

by

John Tweed

1 INTRODUCTION.

The problem of determining the distribution of stress near the tip of

a crack which originates at the edge of a circular hole in an infinite elastic

solid appears to have been considered first by 0. L. Bowie [i] who solves it

by using a complex mapping technique. It would seem, however, that the

results givea by Bowie are not very accurate, so in this paper we wish to

show that the stress intensity factor and crack energy are related to the

solution of a Fredholm equation and may therefore be calculated to a high

degree of accuracy.

We shall assume that the problem is to be solved under the cunditions

of plane strain and that the crack and the hole are defined, in plane polar

coordinates (r, 0), by the relations R < r < Rb, 0 and

0 < r < R, 0 < e < 27r respectively.

Figure 1.
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If the loading is symmetric about the plane of the crack it is clear

-hat the problem may be reduced to that of finding a solution of the equations

of elasticity for the region R < r < -, 0 < 6 < i, which is such that
(1) at infinity the stresses a r(r, 0), arB(r, 6), a B(r, 0) are

O(r-) and the displacements u (r, 0), u (r, 8) are O(r-),L 0(2) (r, 0) - 0, R < r <,

(3) (r, O) - u0 (r, 1) - 0, R < r <

(4) ar(R, 0) 0 < < ,

(5) ar (R, 0) 0, 0 < < r,
rO

(6) a (r, 0) - f(r), R < r < Rb,

(7) u (r, 0) -0, Rb < r <c,

and
aus (r, 6)

(8) limit 6  <

2. REDUCTION OF THE PROBLEM TO AN INTEGRAL EQUATION.

In order to find a uL --1e representation for the stresses ani dis-

placements in the problem set out above we shall begin by superimpoFing the

solutions of problems ' and 2 below.

PROBLEM 1ý Find a solution of the equatione of elasticity for the region

R -' r < c, 0 6 < Tr, which Is such that

(a) at infinity the stresses are 0(r- 2) ead the displacements are 0(r-

(b) a r(r, 0) u6 (r, 0) 0, R < r <

and

(C) C; (r, ff) u (r, T) 0, R < r <

Ly the method of separacion of variables it is not difficult to show

(e.g. see Duielli, Phillips and Tsac j) that the Airy stress function

for this problem is given by

ýj"(r, C) zlog r + C r cos 0 + c r- + d r- co' no (2.1)
n=2 n n
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and the corresponding stresses and displacements by

Orr (r, e) =cr -0 r n~ -n-2+( 2)(n -1)d nr~n]cos no (2.2)

-n-2 )n
a rr(r, 0) = r [n(+)cn r + n(n-1)dn r I sinno - (2.3)

n =l
-2: • -n-2

ars(r, 8) = - cr[ + lNnr + )cnr - + (n - 2)(n - 1)dnr Icos no (2.4)
n-i

+ r - 1 -2 -
u~(r, 8) - ---- Co r + c rn COB 0~n n-2( ~drncsn 2

Urr, 0) 11

+ • [n cr-n-i + (n+ 2 -4 )dnrn+l ,os(2.5)

n-2

and

u (r, 6) 1+ Ic r-2 sinO + Y [n c r-n-i + (n - 4 + 4n)d r-n'l ]sin n8
0 E n=2 n n' (2.6)

where E is the Young's modulus and n is the Poisson's ratio of the material,

PROBLEM 2. Find a solution of the equations of elasticity, for the half-plane

0 < r < -, 0 < 6 < v, which is such that

(a) at infinity the stresses are 0(r- 2) and the displacements are 0(r- ),

(b) at the origin the stresses and displacements are bounded,

(c) a r(r, 0) 0, 0 _ r <

and

(d) a•0 r, 7T) u (r, 7T) 0, 0 < r <

By utilising the properties of the Mellin transform (e.g. see Tranter [3))

it can be shown that the solution of the problem may be written in the form
i °rr~r' -2 -iF2'l A(s) r

) ( - 2 r -2 -s I -s (s + 4)cos(6 - i)(s + 2)
rr -2 s2nrs 2

- (s * 2)cosk(8 - ir)sJ ; r] (2.7)
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r (r, )= r-2-M -1i(.s+ 2)Aes{ - w)(9 + 2) - sin(e - 1)s} ; (, 2.8)

r 2 sins

o 0 6(r,6)=r 2 M-l A(s) { + 2)cos(0 - 1r)s
12 sinirs

- s cos(e - w)(s + 2)} ; rJ (2.9)

u (r, o) 1+ IL M-[ l A(s) {(s + 2)cos(e -)sr rE 2(s + l)sinns

- (s + 4 - 40)cos(e - 7r)(s + 2)} ; r] , (2.10)

and

ue(r, 6) 1 +_n M-I[2 A(s) {(s + 2)sin(e - r)s
rE k(s + l)sin~rs

- (s - 2 + 4n)sin(8 - 7r)(s + 2)} ; rj (2.11)

where M-1 is the inverse Mellin transform and -1 < Re(s) < 0,

Clearly by superimposing the solutions of these two problems we obtain

a solution of the equations of elasticity for the region R < r <, 3 < 8 <

which automatically satisfies conditions (1), (2), and (3) and which is

such that
cc

Orr(r, e) a c r- 2 -2 [ nn + 1)c r-n-2 + (n + 2)(n - l)dn r-ncos no
n=l

+ rM A -s) t(s + 4)cos(O - r)(s + 2)
2 sinrs

- (s + 2)cas(O -7 0)s} ; r], (2 l?;

(r, e) = n(n -r 1)c r-n- 2 + n(n -)dr-n]sin norP ~nn
r-- I I i

+ r-2 M- fk ( 2)A(S) {sin(e - 1r)(s + 2) - sin(e - Tr] , (2413)
12 siniPsJ
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oaH(r, 0) c- c- + r [n(n + 1)c nr + (n - 2)(n - 1)d rnlcros nn=1

-2 -1r A {(s + 2)cos(O - 9)s
[2 sinirs

- s Cos(0 - -)(s + 2)1 ; rj * (2.14)

u r(r, 0) - + -c 0 r-1+ cr-2Cos + { {nc r-n-1 + (n+ 2"-4rdn rl }Cos nO]
E 1 n

+ _ + r M-1 A(s) {(s + 2)zos(8 - 10s
rE 2s+ 1)sinirs

(a + 4 - 4rn)cos(0 - n)(s + 2)1 ;r (2.15)

and

1n[cr-2iln6 -nc i 4r4• dr-n+l~sn
0) - 1. + rn + (n - 4 + 4n)d n sin nO]E n-2 n

+ i M-I A (s) {(s + 2)sin(e - •)s
SrE 2s + l)sinws

- (s - 2 + 4 0)sin(e - 7r)(s + 2)} ; r * (2.16)

where -1 < Re(s) 0: 0, The complete solution of the problem may now be

obtained by choosing the ul-known function A(s) and the unknown Gequences

tC } and {d I in su,ýn a way that the remaining boundary conditions aren n
satisfied,

From (2.14) and (2,16) we see that conditions (6) and (1) will be

satisfied if A(s) is a solution of the dual equations

M- (A(s)cot•s ; r - r 2f(r) - r 2F(r), R < r < Rb

(2)17)M-[(! + S)-IA(s);r] =0 , Rb < r
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where -1 < Re(s) < 0 and

00

-2 -n-2 1dr-n].
F(r) = -cor [n(n + l)c r + (n- 2)(n - r (2.18)

, n=l

If we now assume that A(s) may be written in the form

A~s) rRb
A(s) p(t) tS dt (2.19)

R

we find that (see Tweed [41) 0, 0 < r < R
,Rb

M- [A(s)(l + s)-; r] r fr p(t)dt, R < r < Rb
Vr

1 0, Rb < r < oo (2.20)

and

M-1 [A(s) cotirs ; r] t( dt (2.21)

and hence that the equations (2.17) will be satisfied if

fRb t p(t) dt - r f(r) - r F(r), R < r < Rb, (2,22)

r JR t- r

The equation (2,22) is well known and Tricomi [5] has shown that its solution

is given by

t P(t) I 1 1 /2 Rb R-y - y / f(y)+yF(Y) (223)

Rb - t JR y-Ry -t ()

C[(Rb - t)(t - R)]1/2

where C is an arbitrary zonstanc, In order to determine C we make uee of

condition (81 which t-:get.her with (2.16) and (2.20) clearly implies that

limit p(r) exis 6 ard hence That C = 0, It now follows that
t -- R+
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p(t) is given by the expression

"" t -i - R11,/ 2 R. ;W Rb y y 1 /2 f(y) + y F(y)p t dy (2,23)

Similarly, on applying conditions (4) and (5) we find that

oo-n+2

c + rn(n + 1)r. R-n + (n + 2)(n - 1)dn R n+2cos nO
n-1

=M I[().. s + 4) cos(- 7r) (s + 2) - (s + 2) cos (6 - TO )s; RJ
L 2 

si,7

GO R-n I) dnRn+2] i
j [n(n + l)c R- + n(n - 1)dR )si nO

n=l

M-1  A(s)(s + 2) {sin( - 7r)(s + 2) -sin(a - 7)sJ R]12 sin~s

where 0 < e < ff, and hence that

c. = '{ A~s) • - ~~ ; RJ (2°24)o 2LM- fs+ s 4 (L4
c o - 2 T , n - A ( s ) - -s + 2 R

c 21, n -I A(s)(:+2) ; , n > 1 (2-25).•n r 2s 2 n)(s + 2 + n) -

and r
2Rn-2 A(s) (s + 2) RJ (2-26)

d n T Al s )([s + 212 ;n2 , n > 2

where -1 < Re(s) , 0-

On subs'iruti:ng from (2-19) into (2.2/0 through (2 26) and working

out the inverse Me'.)n transforms, we now find that

2 -Rb
S t p(t)dt , (2.27)

Rn -Rb i•_ /R~n 2  2R
R r p, ! (C n dr, n 1 (2 28)
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and

d =e-2 f t p (t) ýn -- 2! -Ej [E!1+ dt, n >2 (2.29)"n n n-i t ,t21r R

and hence that

F(r) p(t) K(r, t) dt (2.30)

"where

R2 • R - 2 2 t• 2 - 2) t2 - 2

K(r, t) R(R2 t) 2 tR 2 t) 2 t + R 2 r 2 (2.31)
t(R - rt) 3  (R2  rt)2 R2 2 rt r t

At this point we find it convenient to introduce the function P(t)

which in defined by the equation

P(t) = [(t - R)(Rb - t)]1/2 p(t) (2-32)

On substituting from (2.30) into (2.23) and taking account of (2.32) we see

that P(t) must satisfy the integral equation

S( Rb P(p) M(t, 7- dp -

--t) R (p - R)(Rb - p)]1 (233)

where

S(t) - y f(y) dy (2,34)
• •t R y - R( y - t

"and

M(t, L) R - Rb Rb- y K(y, p) dyo (2,35)
7T t R y-R y- t

If we now substitute from (2.31) into (2,35) we find that M(t, p) may be

written in the form



t . -4R2R2 p2)2J-1(2
M(t, p) =t P t R - p ) 3 (t, R2I/P) + p -(R2 - 2)[J 2 (t, 0) - J 2 (r,R 2 /p)]

7rt

J+(t, 0) - Jl(t, R /p)} , (2,36)

whex v

1 Rb 1/2
y _

J(t, x ) r (y - t)37)- :• (
n K ~ry -- J Y-t x-Y

0 < x < R < t < Rb, 1 =, 2, 3.

On making use of the result

J(x)- 1 (Rb y 1/2 y

r Rb1/2

x ( R -1 , Rb<x<0

-1 , R<x<Rb

(Rb- x 1/2  - x < R

\R- x

and the fact that

(t, x) = (x - t)-1 [t J(t) - x J(x)]

a Jl(t,x) 1 a J2(t~x)
J2(t, x) = - -1 and J(t, x)= 2 't---

it now becomes a simple matter to show that M(t, p) is given by the f2rmula

2(R2 2 )2
M(r, 1 '-- {R)R 2 (b - 1) t

2R(R- pt) 2 (bp - R) (P - R)

(b !)-I + 3_b)p AR] t (bp - R)-"/2

8o (R2 - PIbP - R) 3/2(p - R) 5/2 p(R 2 - P0)3(p - R)I'2 f
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+ (t - R)(R.2 - 2) (bp R)
2 2 1/2

It (R -pt) (p - R)

2 (b - 1))p bl/2-

2(R - pt)(bp - R)l/ 2 (p pt J

2 1/2
+ t - R) R (bp - R)(23

Tt(R. - pt)(p - R) I1 2 "

3. THE STRESS INTENSITY FACIOR AND THE CRACK ENERGY.

We shall now show that the stress intensity factor K and the crack

energy W which are defined by the equations

K limit [2(Rb r)]I/ 2  E 2 ua (r,O)K= - [Rb- 2(3.1)

r--Rb_ 2 (1- ) ar

and

Rb
W - JR a 0 (r, 0) u0 (r, 0) dr (3.2)

respectively, are simply related to the function P(t) which was introduced in

the last section.

By substituting from (2.32) into (2.20) and taking account of (2.16)

we see that

u (r, 0) t(]i/2 b R < r < Rb. (3.3)
E [r (t -R)(Rb -t]"

It now follows that K is given by

21/2

K / / (Rb) (3.4)
[R(b - 1)11/2

and W by

2 fRb Pt
2(1E-q) P(t) dt 1 R f(r) dr. (3.5)

E R [(Rb - t)(t - R)] R
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